China Good quality Ball Thread Rod Mechanical Hydraulic Lift Elevator Scaffolding Gearbox Electric Worm Gear Screw Jack for Construction Jump Form helical bevel gear

Product Description

1.Convenient to adjust
2.Wide range of ratio
3.Easy to install
4.high torque
Application Industries:
Our SWL series screw jacks are widely used in the industries such as metallurgy,mining,hoisting and transportation, electrical
power,energy source,constrction and building material,light industry and traffice industry

Screw Jacks in construction

Often found in climbing mechanism of construction,the screw jacks use physical means to raise and lower loads, which typically range from 5 tons to 30 tons. A screw jack is a common type of mechanical jack, which works via a motor and gearbox by an operator. A screw uses the shape of its threads to raise or lower the load, or a traveling nut does the lifting while the screw turns in place. Mechanical jacks are self-locking(not for ball screw), which means that when power is removed from the jack, the screw stays in place until power resumes. This setup makes mechanical jacks safer than their hydraulic counterparts, because users don’t have to fear a loss of power. The main components of screw jacks are; trapezoidal lifting screw also known as lead screw, worm screw, worm gear and gear housing. A worm screw is rotated manually or by a motor. With the rotation of the worm gear, the lead screw in it moves upwards or downwards linearly. The feed rate of the screw depends on the turning speed, the number of teeth of the gears and the size of the screw pitch. In some models of jackscrews, The lifting screw does not move up and down. It only rotates around its axis. A lifting nut (also known as a travelling nut) moves along the lead screw. The lifting nut of the screw jack is made of bronze to decrease friction.

Product Parameters

MODEL

 

SWL2.5

SWL5

SWL10

SWL15

SWL20

SWL25

SWL35

Maximum lifting force (kN)

 

25

50

100

150

200

250

350

Screw thread size

 

Tr30*6

Tr40*7

Tr58*12

Tr58*12

Tr65*12

Tr90*16

Tr100*20

Maximum tension (kN)

 

25

50

99

166

250

350

Worm gear ratio (mm)

P

1/6

1/8

3/23

1/8

3/32

3/32

 

M

1/24

1/24

1/24

1/24

1/32

1/32

Worm non rotating stroke (mm)

P

1.0

0.875

1.565

1.56

1.5

1.875

M

0.250

0.292

0.5

0.5

0.5

0.625

Maximum elongation of screw rod under tensile load (mm)

 

1500

2000

2500

3000

3500

4000

Maximum lifting height at maximum pressure load (mm)

The head of the screw rod is not guided

250

385

500

400

490

850

820

Lead screw head guide

400

770

1000

800

980

1700

1640

Worm torque at full load(N.m)

P

18

39.5

119

179

240

366

464

M

8.86

19.8

60

90

122

217

253

efficiency(%)

P

22

23

20.5

 

19.5

16

18

M

11

11.5

13

 

12.8

9

11

Weight without stroke(kg)

 

7.3

16.2

25

 

36

70.5

87

Weight of screw rod per 100mm(kg)

 

0.45

0.82

1.67

 

2.15

4.15

5.20

Detailed Photos

 

 

 

SWL Series worm screw Jack:

1.The elevator is a combination of turbine pair and trapezoid screw rod to complete the lifting and lowering of objects. 2.Compact structure, light weight, safety and reliability, long service life, convenient installation

3.Self-locking function in the static state.

 

1. screw rod

2. nut bolt

3. cover

4.Skeleton oil seal

5.Bearing

6.Worm gear

7.Oil filling hole

8.Case

9.Skeleton oil seal

10.Cover

11. nut bolt

12.Bearing

13.Skeleton oil seal

14.Bearing

15.worm

16.Flat key

17.Bearing

18.Skeleton oil seal

19.Cover

20.Nut bolt

Product Description

 

Related Products

 

Packaging & Shipping

 

Company Profile

 

Standard or Nonstandard: Nonstandard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Power Transmission
Customized Support: OEM, ODM, Obm
Brand Name: Beiji or Customized
Certificate: ISO9001:2008
Structures: Worm Gear and Worm
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

screw gear

How does a screw gear impact the overall efficiency of a system?

A screw gear, also known as a worm gear, plays a significant role in the overall efficiency of a system. The design and characteristics of the screw gear can influence several factors that affect the system’s efficiency. Here’s a detailed explanation of how a screw gear impacts the overall efficiency of a system:

  • Gear Ratio: The gear ratio of a screw gear system determines the relationship between the input and output speeds. In a screw gear, the gear ratio is typically high, which means that a small rotation of the worm gear results in a larger rotation of the worm wheel. This high gear ratio allows for precise control and slow movement, but it also leads to a trade-off in terms of mechanical efficiency. The high gear ratio can result in a lower mechanical efficiency due to increased friction and power loss.
  • Friction and Efficiency: Screw gears inherently introduce more friction compared to other gear types due to the sliding motion between the worm and the worm wheel. This sliding action generates friction, which can reduce the overall efficiency of the system. The efficiency of a screw gear system depends on various factors, including the materials used, the lubrication, and the design parameters. Proper lubrication and the use of high-quality materials can help minimize friction and improve the efficiency of the system.
  • Lubrication and Efficiency: Adequate lubrication is crucial for reducing friction and maximizing the efficiency of a screw gear system. The lubricant forms a film between the contacting surfaces of the worm gear and worm wheel, reducing direct metal-to-metal contact and minimizing frictional losses. Insufficient or improper lubrication can lead to increased friction, higher operating temperatures, and reduced efficiency. Therefore, proper lubrication, including the selection of the appropriate lubricant type and viscosity, is essential for optimizing the efficiency of the system.
  • Backlash: Backlash refers to the play or clearance between the mating teeth of the worm gear and worm wheel. Excessive backlash can lead to energy loss and reduced efficiency. It can cause vibrations, impacts, and inefficient power transmission. Therefore, minimizing backlash through precise manufacturing and proper meshing of the gears is essential for maintaining high efficiency in a screw gear system.
  • Mechanical Efficiency: The mechanical efficiency of a screw gear system is influenced by various factors, including the design, manufacturing tolerances, lubrication, load conditions, and operating speed. In general, screw gears tend to have lower mechanical efficiency compared to other gear types, such as spur gears or helical gears. However, advancements in gear design, materials, and lubrication technologies have improved the overall efficiency of screw gear systems in recent years.
  • Application Considerations: The impact of a screw gear on the overall efficiency of a system also depends on the specific application requirements. Screw gears are commonly used in applications that prioritize precise motion control over high efficiency, such as in applications requiring heavy loads or precise positioning. In such cases, the advantages of screw gears, such as high gear ratios and self-locking capabilities, outweigh the potential efficiency trade-offs.

It is important to note that the overall efficiency of a system is influenced by multiple factors beyond the screw gear itself, including other components, power transmission losses, and system design. Therefore, when evaluating the efficiency of a system, it is essential to consider the collective impact of all components and factors involved.

screw gear

Can screw gears be used in heavy-duty machinery and equipment?

Yes, screw gears, also known as worm gears, can be used in heavy-duty machinery and equipment. Screw gears offer several advantages that make them suitable for such applications. Here’s a detailed explanation of using screw gears in heavy-duty machinery and equipment:

  • High Load Capacity: Screw gears are known for their high load-carrying capacity. The helical design of the gear teeth allows for distributed contact between the worm gear and the worm wheel, enabling them to handle significant loads. This makes screw gears well-suited for heavy-duty applications where large forces and torque need to be transmitted.
  • Self-Locking Capability: Screw gears have a self-locking feature, which means they can hold position without the need for additional braking mechanisms. In heavy-duty machinery and equipment, this self-locking capability can be advantageous, especially when it is necessary to prevent the load from moving or to maintain position under static or dynamic loads.
  • Compact Design: Screw gears have a compact design, which allows for space-saving installations in heavy-duty machinery and equipment. Their axial orientation and the ability to achieve high gear ratios in a single stage contribute to their compactness. This is particularly beneficial in applications where space is limited or where a compact gear system is desirable.
  • Smooth and Quiet Operation: Screw gears generally operate with low noise and vibration levels. The helical nature of the gear teeth engagement results in smooth and continuous contact, reducing noise and minimizing vibrations. This is advantageous in heavy-duty machinery and equipment, where quiet operation is often desired to enhance operator comfort and minimize the impact on surrounding components.
  • High Gear Reduction Ratios: Screw gears can achieve high gear reduction ratios in a single stage, which is beneficial in heavy-duty applications that require significant speed reduction or torque multiplication. This eliminates the need for multiple gear stages or additional components, simplifying the gear system design and reducing the overall complexity.
  • Durability and Longevity: Screw gears are known for their durability and long service life. When properly designed, manufactured, and maintained, they can withstand heavy loads, operate under challenging conditions, and exhibit good resistance to wear and fatigue. This makes them suitable for heavy-duty machinery and equipment that operate in demanding environments.
  • Compatibility with Various Materials: Screw gears can be manufactured from different materials to suit specific application requirements. This flexibility allows for compatibility with various other components and materials used in heavy-duty machinery and equipment. The choice of materials can be tailored to factors such as strength, wear resistance, and compatibility with lubricants or operating conditions.

In summary, screw gears can be effectively used in heavy-duty machinery and equipment due to their high load capacity, self-locking capability, compact design, smooth operation, high gear reduction ratios, durability, and compatibility with different materials. By considering the specific requirements of the application and employing proper design and manufacturing practices, screw gears can provide reliable and efficient power transmission in heavy-duty scenarios.

screw gear

Can you explain the concept of screw gear threads and their functions?

Screw gear threads play a crucial role in the operation and functionality of screw gears, also known as worm gears. The threads are an essential component of the worm, which is the cylindrical gear with a helical thread wrapped around it. Here is a detailed explanation of the concept of screw gear threads and their functions:

  • Thread Design: The threads on a screw gear, specifically the helical thread on the worm, are designed in a helical shape, resembling the threads of a screw. The helical thread is wrapped around the cylindrical body of the worm, creating a continuous spiral path along its length. The pitch of the thread refers to the distance between successive thread crests or valleys.
  • Meshing with Worm Wheel: The primary function of the screw gear threads is to mesh with the teeth of the worm wheel. The helical thread of the worm engages with the teeth of the worm wheel, creating a sliding contact between them. As the worm rotates, the helical thread drives the rotation of the worm wheel, transmitting rotational motion and power.
  • Gear Reduction and Torque Multiplication: The helical design of the screw gear threads allows for a large number of teeth on the worm wheel to be engaged at any given time. This results in a high gear reduction ratio, meaning that for each revolution of the worm, the worm wheel rotates by a smaller fraction. The gear reduction ratio enables torque multiplication, making screw gears suitable for applications requiring high torque output.
  • Precision Positioning: Screw gear threads are crucial for achieving precise positioning in applications where accuracy is essential. The fine pitch of the helical thread allows for small incremental movements, enabling precise control over the rotation of the worm wheel. This feature is particularly advantageous in applications such as robotics, where accurate positioning and motion control are necessary.
  • Self-Locking Action: The helical thread design of screw gears gives them a self-locking capability. When the worm is not rotating, the friction between the helical thread and the teeth of the worm wheel tends to hold the gear system in place. This self-locking action prevents the worm wheel from backdriving the worm, providing inherent braking or locking functionality. It ensures that the gear mechanism maintains its position without the need for additional braking or locking mechanisms.
  • Efficiency and Lubrication: The sliding action between the screw gear threads and the teeth of the worm wheel introduces more friction compared to other types of gears with rolling motion. This sliding motion affects the efficiency of the gear mechanism, resulting in higher energy losses and heat generation. Proper lubrication with appropriate lubricants is essential to minimize wear, reduce friction, and improve the overall efficiency of the screw gears.

Overall, screw gear threads enable the meshing and transmission of rotational motion and power between the worm and the worm wheel. They facilitate gear reduction, torque multiplication, precise positioning, and self-locking action. Understanding the design and functions of screw gear threads is crucial for utilizing screw gears effectively in various applications.

China Good quality Ball Thread Rod Mechanical Hydraulic Lift Elevator Scaffolding Gearbox Electric Worm Gear Screw Jack for Construction Jump Form helical bevel gearChina Good quality Ball Thread Rod Mechanical Hydraulic Lift Elevator Scaffolding Gearbox Electric Worm Gear Screw Jack for Construction Jump Form helical bevel gear
editor by CX 2023-11-30

Tags:

Recent Posts

screw-gear

As one of leading screw-gear manufacturers, suppliers and exporters of mechanical products, We offer screw-gear and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of bush chains

We specializing in the production of Agricultural Gearbox, PTO Shafts, Sprockets, Fluid Coupling, Worm Gear Reducers, Gears and racks, Roller Chains, Sheave and Pulleys, Planetary Gearboxes, Timing Pulleys, Shaft Collars and more.

We have exported our products to clients around the world and earned a good reputation because of our superior product quality and after-sales service.

We warmly welcome customers both at home and abroad to contact us to negotiate business, exchange information and cooperate with us.